
Live und in Farbe

 Live Migration

André Przywara
ap@amd64.org

CLT 2010

Agenda

● (Live) Migration explained (Why? Limits!)
● Xen and KVM usage
● Details

– Memory synchronization
– QEMU device state transfer
– Host considerations (CPU features)
– Cross Vendor Migration

● QEMU block device transfer
● Project Remus (Xen)
● Demo!

Guest Migration

● move a virtual machine from one host to
another

● offline:
– power down the guest, copy files, restart
– comparable to a reboot

● migration:
– halt the guest, copy state, wake up again
– minimal downtime

● live migration:
– copy state in background, switch at one
– (almost) no downtime at all

Reasons for migration

● Load balancing:
– freeing loaded hosts in favor of idle ones

● Upgrade / update / planned downtime
– migrate to a spare machine, rework the host,

migrate back to the original one
● Roaming “eternal” desktop – Uptime, uptime!

– desktop is running on a server, migrated to the
respective client workstation

● Replacing older machines
● You name it!

How does it work?

● Host has full control over the guest
● Can read/write/protect memory
● Devices are (usually) also virtualized
● Host controls CPU usage

– similar to OS vs. application
● Steps:

– host de-schedules the guest
– host copies memory content over network
– host copies device state over network
– old host signals new host to take over

Limits of migration

● disk images should be accessible
– through a SAN, NAS, NFS
– can also be copied / synced (DRBD)

● no downgrade of CPU features
– maybe start with features disabled?

● No device pass-through
● Network connectivity must prevail
● Resources should match (memory, vCPUs)
● Matching software versions (devices!)

Xen / KVM usage

● Xen: via “xm” tool
– $ xm migrate <domid> <newhost>
– xend must be running on both sides

● KVM:
– on target:

 $ qemu –incoming tcp:0:<port>
– on source: via QEMU monitor

 (qemu) migrate tcp:<host>:<port>
– Need to have the exact same guest parameters on

the command line (management app!)

Memory synchronization

● Problem: transferring RAM image takes time
● e.g.: 1GB @ 40 MB/s = 25 sec

– too long for live migration
● solution:

– start copying (in background)
– write protect already copied pages
– on page fault: allow r/w again, mark page as dirty
– repeat: copying dirty pages until

● no more left
● number of tries exhausted: halt guest and copy rest

1 2 33' 4

QEMU device state transfer

● QEMU devices used for Xen and KVM
● each device has a VMStateDescription

– describes the data that holds the complete state
● variables will be dumped to the stream
● contains version information (backward

compatible)
● QEMU will iterate through all devices

– sends the device name and instance number
– executes a pre_save callback function
– dumps the device' state to the stream (TCP)

QEMU device state dump

0000000: 51 45 56 4d 00 00 00 03 01 00 00 00 01 05 62 6c
0000010: 6f 63 6b 00 00 00 00 00 00 00 01 00 00 00 00 00
0000020: 00 00 02 01 00 00 00 03 03 72 61 6d 00 00 00 00
0000030: 00 00 00 03 00 00 00 00 02 87 00 04 00 00 00 00
0000040: 00 00 00 08 01 00 00 00 53 ff 00 f0 c3 e2 00 f0
0000050: 53 ff 00 f0 53 ff 00 f0 53 ff 00 f0 53 ff 00 f0

QEVM..........bl
ock.............
.........ram....
................
........S.......
S...S...S...S...

QEMU magic version stage device namesection ID

instance no.version no.

QEMU block device transfer

● Recent QEMUs can transfer the block device
● No need for a shared storage
● (qemu) migrate -b tcp:<host>:<port>
● Can also migrate overlay only (-i)
● Uses same approach like RAM transfer
● Works like this:
– Transfer data in chunks of 1 MB
– Each chunk is preceded by a 64bit address
– Allows gaps
– Each chunk has the block device name in it

Project Remus (Xen)

● High availability using migration
● “Continuously” migrating the guest
● Avoids slowdown by snapshotting
● Only commits results when transmitted
● Snapshot frequency about every 25ms
● Running machine slightly

in the past
● part of Xen 4.0

Host considerations

● Applications and libraries rely on a consistent
set of CPU features (like SSEx)

● CPU instruction set may change at migration
● no downgrade! (loss of a feature)
● upgrade can be hidden (CPUID masking)
● least common denominator in a migration

pool dictates the feature set of all guests
● KVM: use -cpu kvm64
● migration pool should be well defined before

starting the guest

Cross Vendor Migration

● Migrating from an Intel box to an AMD box
(and vice versa ;-)

● allows for bigger migration pools
● avoids vendor lock in
● maps mostly to different CPU generations
● but subtle differences:

– x87 FPU rounding on some instructions (e.g. for
fsin, deprecated)

– sysenter/syscall support in compat mode
(emulation upstream)

– slightly different guest state checks (fixed)
– Model specific registers (MSRs) (fixed)

● Both Xen and KVM support it now!

Demo! Live! In Color!

● Using KVM (qemu-kvm 0.12.3, kernel 2.6.33)
● Migration between servers, using VNC
● Windows XP 32 guest with running

Passmark stress test application
● Between Intel C2Q and AMD Opteron

Demo screenshot

References

● Project Remus: http://dsg.cs.ubc.ca/remus/
● Cross Vendor Migration:

http://developer.amd.com/assets/CrossVendorMigration.pdf
● QEMU live migration:

http://kvm.et.redhat.com/wiki/images/5/5a/KvmForum2007$Kvm_Live_Migration_Forum_2007.pdf

http://dsg.cs.ubc.ca/remus/
http://developer.amd.com/assets/CrossVendorMigration.pdf
http://kvm.et.redhat.com/wiki/images/5/5a/KvmForum2007$Kvm_Live_Migration_Forum_2007.pdf

	Title
	Agenda
	Guest Migration
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

